answersLogoWhite

0


Best Answer

E=hf and E= (hc)/w

E=energy

h=planck's constant

f=frequency of light

c= speed of light

w= wavelength of light (normally represented by the greek letter lambda)

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What is the relationship between the energy in light and the frequency of light?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Physics

What is the relationship between frequency and energy of a light wave?

the higher the frequency, the higher the energy


What is the relationship between the frequency o a light wave and its energy?

the higher the energy, the higher the frequency


What is the relationship between wavelength of light and the energy of light?

The energy in one photon of any electromagnetic radiation is directly proportionalto its frequency, so that would be inversely proportional to its wavelength.Note: There is no energy in the protons of light, since light has no protons.


What is the relationship between wavelength of light and the quantity of energy per photon?

The energy per photon is directly proportional to the frequency; the frequency is inversely proportional to the wavelength (since frequency x wavelength = speed of light, which is constant); thus, the energy per photon is inversely proportional to the wavelength.


What is the relationship between freqency and energy?

The relationship between frequency and energy of electromagnetic radiation was first described by the theoretical physicist Max Planck. He stated that the energy (E) of a single photon is directly proportional to the frequency of its associated electromagnetic wave (v). The coefficient of this proportionality is the Planck Constant (h). The relationship between frequency and energy is thus defined:E = hvThe value of h is 6.62606957(29)×10−34 joule-seconds.Since the frequency of light, v, can be defined as v = c/λ, we can re-write the energy calculation as:E = (hc)/λNote that these definitions are only true for electromagnetic radiation; the proportionality of frequency and energy in other types of waves is also true, but the relationship is not defined by the Planck constant in such cases.

Related questions

What is the relationship between frequency and energy of a light wave?

the higher the frequency, the higher the energy


What is the relationship between the frequency o a light wave and its energy?

the higher the energy, the higher the frequency


What is the relationship between the wavelength and the frequency of radiant energy?

Wavelength and frequency are inversely proportional.


Why won't a very bright beam of red light impart more energy to an electron than a feeble beam of violet light?

Ok, so this goes back to the inverse relationship between wavelength and frequency ( energy). As wavelength increases , frequency decreases, the relationship between the two is a inverse relationship. the Red light, wavelength of approx. 700 m^-7 , has a greater wavelength then of the blue light, 400m ^-7. This means , due to frequency and wavelength having an inverse relationship, blue light has a greater frequency (energy) than red light. This is why blue light, no matter how dim, will impart more energy to an electron , then a red light would.


What is the relationship between wavelength of light and the energy of light?

The energy in one photon of any electromagnetic radiation is directly proportionalto its frequency, so that would be inversely proportional to its wavelength.Note: There is no energy in the protons of light, since light has no protons.


What is the relationship between wavelength of light and the quantity of energy per photon?

The energy per photon is directly proportional to the frequency; the frequency is inversely proportional to the wavelength (since frequency x wavelength = speed of light, which is constant); thus, the energy per photon is inversely proportional to the wavelength.


What is the relationship between a photons energy and its wavelength?

A high energy light will have a shorter wavelength than a low energy light. If the wavelength goes down, then the frequency goes up. When calculating energy in the equation, E=hv, frequency (v) is the variable, not the wavelength. So in the equation, if you wanted a more energy (E), you would have the frequency be large. For the frequency to be big, then the wavelength has to be low.


What is the relationship between wavelength of light and the energy of its protons?

The energy in one photon of any electromagnetic radiation is directly proportionalto its frequency, so that would be inversely proportional to its wavelength.Note: There is no energy in the protons of light, since light has no protons.


How are wavelength and frequency and energy related for photons of light?

They are inversely proportional or relationship to each other.


What is the relationship between freqency and energy?

The relationship between frequency and energy of electromagnetic radiation was first described by the theoretical physicist Max Planck. He stated that the energy (E) of a single photon is directly proportional to the frequency of its associated electromagnetic wave (v). The coefficient of this proportionality is the Planck Constant (h). The relationship between frequency and energy is thus defined:E = hvThe value of h is 6.62606957(29)×10−34 joule-seconds.Since the frequency of light, v, can be defined as v = c/λ, we can re-write the energy calculation as:E = (hc)/λNote that these definitions are only true for electromagnetic radiation; the proportionality of frequency and energy in other types of waves is also true, but the relationship is not defined by the Planck constant in such cases.


What is the relationship between the frequency and wavelength of a water wave?

The relationship v = T * λ (speed = frequency * wavelength) is true for all waves. For anything with a constant speed, higher frequency means shorter wavelength.


What is the relationship between intensity and frequency?

I assume you are asking in regard to the photoelectric effect. The intensity of the photons can be viewed as the brightness of the light. However, the frequency is the number of wavelengths that pass a certain point in a second. The frequency is also used to determine the energy of the photon (E=hf).