Q: What is the frequency of a photon with an energy of 3.26 x 10 -19 J?

Write your answer...

Submit

Still have questions?

Continue Learning about Physics

The frequency of the photon is 4.92 1014 Hz.

The energy of a photon can be calculated using the formula E = h * f, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency of the photon. Thus, for a frequency of 5 x 10^12 Hz, the energy of the photon would be 3.31 x 10^-21 Joules.

The energy of a photon is determined by the equation E = hf, where E is energy, h is Planck's constant (6.626 x 10^-34 J s), and f is the frequency of the photon. First, calculate the frequency of the photon using the speed of light equation, c = λf. Then, substitute the frequency into the energy equation to find the energy of the photon.

The energy of a photon is given by ( E = hf ), where ( h ) is the Planck constant and ( f ) is the frequency of the photon. Rearranging the formula gives ( f = E / h ). Plugging in the given energy value and the Planck constant, the frequency of the photon is approximately 3.01 x 10^22 Hz.

The energy of a photon can be calculated using the formula E=hf, where E is energy, h is Planck's constant (6.63 x 10^-34 J.s), and f is the frequency of the photon. Alternatively, you can use the formula E=hc/λ, where c is the speed of light (3.00 x 10^8 m/s) and λ is the wavelength of the photon.

Related questions

The frequency of the photon is 4.92 1014 Hz.

The energy of a photon can be calculated using the formula E = h * f, where h is Planck's constant (6.626 x 10^-34 J*s) and f is the frequency of the photon. Thus, for a frequency of 5 x 10^12 Hz, the energy of the photon would be 3.31 x 10^-21 Joules.

38.4 *10-34J

A photon with energy 3.0 x 10-19 J A photon with wavelength 525 nm A photon with frequency 7.6 x 1014 Hz A photon with frequency 2 x 1015 Hz

5.10 x 10^14 hz

The energy of a photon is directly proportional to its frequency. The constant of proportionality is Planck's Constant. 'h' = 6.63 x 10-34 joule-second

c = wavelength X frequency, where c is the speed of light, which is 299,792,458 m/s. So you need the wavelength of the photon. Then you divide c/wavelength and the result will be the frequency.

The energy of a photon is given by the equation: E = h * f where E is the energy of the photon, h is Planck's constant, and f is the frequency of the photon. Plugging in the given frequency of 5 × 10^20 Hz, and using the value of Planck's constant h = 6.626 x 10^-34 joule seconds, we get: E = (6.626 x 10^-34 J s) * (5 x 10^20 Hz) = 3.313 x 10^-13 joules Therefore, the energy of a photon with a frequency of 5 × 10^20 Hz is approximately 3.313 x 10^-13 joules.

E = hf The energy per photon is equal to Planck's constant times the frequency, in this case 6.62606957×10−34 x 107.3x106

4.92 x 10^14 Hz

It's proportional to the frequency of the photon ... 6.63 x 10-34 joule per Hz.

6.88 x 10 14 Hz