answersLogoWhite

0


Best Answer

The only difference between the two of these algorithm's is the person who invented the steps to solving the problems. The disadvantage to both of these are that they are very complex and hard to solve. The advantage is that using these methods can solve math problems that were unsolvable before this strategy was founded.

User Avatar

Wiki User

9y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What are the advantages and disadvantages of dijkstra scholten algorithm versus bellman-ford algorithm?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

Which is the best shortest path algorithm?

dijkstra's algorithm (note* there are different kinds of dijkstra's implementation) and growth graph algorithm


What is Dijkstra's algorithm?

Dijkstra's algorithm is used by the OSPF and the IS-IS routing protocols. The last three letters in OSPF (SPF) mean "shortest path first", which is an alternative name for Dijkstra's algorithm.


What are the advantages and disadvantages of dijkstra-scholten algorithm versus Huangs algorithm?

Main disadvantages:The major disadvantage of the algorithm is the fact that it does a blind searchthere by consuming a lot of time waste of necessary resources.Another disadvantage is that it cannot handle negative edges. This leads toacyclic graphs and most often cannot obtain the right shortest path.


What is the time complexity of Dijkstra's algorithm?

Dijkstra's original algorithm (published in 1959) has a time-complexity of O(N*N), where N is the number of nodes.


What is the Dijkstra's algorithm?

Dijkstra's algorithm has importance when you are trying to find the shortest path between two points. It's used in the computer networking field where routing protocols, like OSPF, uses it to find the shortest path between routers. http://en.wikipedia.org/wiki/Dijkstra%27s_algorithm


Does Dijkstra's Algorithm work when there might be arcs with negative weights?

No, Dijkstra's algorithm can not be used when there are negative arc lengths. In Dijkstra's, the vertex that can be reached from the current set of labeled vertices and that of having the minimum weight among the alternatives is permanently labeled in that iteration. Since a negative arc weight would result in changing the label of a pre-permanently-labeled vertex, the algo collapses. Bellman's algorithm is used with negative arc lengths.


Which algorithm is run by link-state routing protocols to calculate the shortest path to destination networks?

Dijkstra


Can dijkstra's algorithm produce a spanning tree?

yes, but a shortest path tree, not a minimum spanning tree


Where we can use dijkstra's algorithm?

A practical application is in certain routing protocols, like OSPF. The problem it solves is to search for the "shortest" path to each destination - "shortest" meaning the one that has the lowest "distance" or "metric" according to the criteria used. Dijkstra's algorithm is easy to use and is a good graph search algorithm to use when it is hard to calculate the heuristics.


Why is dijkstra's algorithm not suitable for distributed applications with large number of distributed nodes?

"OSPF detects changes in the topology, such as link failures, very quickly and converges on a new loop-free routing structure within seconds. It computes the shortest path tree for each route using a method based on Dijkstra's algorithm, a shortest path first algorithm."


What is the difference between Dijkstra's algorithm and Floyd's algorithm?

Dijkstra doesn't support negative weight-age, Floyd support negative edges but no negative cycles. Dijkstra running time is v2 and Floyd has v3.Dijkstra is fast compared to Floyd, because only find the shortest path for single node. FloydSlow as compared to Dijkstra.


Who is the inventor of Reverse Delete Algorithm for MST When was this first published?

The Reverse Delete Algorithm for finding the Minimum Spanning Tree was first introduced by Edsger Dijkstra in 1959. He presented this algorithm in his paper titled "A note on two problems in connexion with graphs" which was published in Numerische Mathematik.