answersLogoWhite

0


Best Answer

The equation for an inductor is ...

di/dt = v/L

... meaning that the rate of change of current in amperes per second is proportional to voltage and inversely proportional to inductance.

0.2 amperes seconds-1 times 0.1 Henry = 0.02 volts = 20 millivolts

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: How much voltage is induced if the current through a 100 mH coil is changing at a rate of 200 mA per second?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Engineering

What determines whether an induced current is a direct current or an alternating current?

There is no such thing as an 'induced current'. What is 'induced' is a voltage. The direction of the induced voltage is determined by the direction of the changing current that induces that voltage, because the induced voltage will always act to oppose that change in current. So, if the current is increasing, then the direction of the induced voltage will act to opposethe increase in current. If the current is decreasing, then the direction of the induced voltage will act to sustainthat current.


When can voltage be induced but not current?

"Induced" is the verb you are looking for. A current is induced in the secondary circuit by the current in the first changing, provided both conductors are close enough for the driving current's electro-magnetic field to enclose the second conductor. Note that word "changing". Direct current produces a field but that remains constant and does not induce a secondary current, as a.c. does.


How to generate a voltage in a coil?

The voltage induced into a coil is proportional to the rate of change of current (dI/dt) through that coil. If the current is a constant value, then no voltage is induced. The equation is as follows: V = - L (dI/dt)where L is the inductance of the coil, measured in henrys, and dI/dt means 'change of current divided by change of time'. The minus sign indicates that the induced voltage opposes the change in current.


What is induction of electric current?

According to Farady's law, whenever the flux linking with the coil changes, emf will induce in that coil.Actually the material should oppose the flux changes, that opposition is the induced current. Induced current will set own flux, opposite to that of the flux changes.For further details, refer lenz law.


Difference between back EMF and induced EMF?

An induced electromotive force (emf) is an induced voltage. Voltage (emf) causes current flow, and this induced voltage will cause a current that is called the induced current.We might also add that the induced current will cause a magnetic field to expand about the current path, and this field will "sweep" the conductor. The sweeping of the conductor by that expanding magnetic field will set up an emf that will oppose the emf that was creating it.CommentTechnically, there is no such thing as an 'induced current'. It is voltage that is induced. Any current flows as a result of that induced voltage being applied to a load. But that current is certainly NOT induced!

Related questions

What determines whether an induced current is a direct current or an alternating current?

There is no such thing as an 'induced current'. What is 'induced' is a voltage. The direction of the induced voltage is determined by the direction of the changing current that induces that voltage, because the induced voltage will always act to oppose that change in current. So, if the current is increasing, then the direction of the induced voltage will act to opposethe increase in current. If the current is decreasing, then the direction of the induced voltage will act to sustainthat current.


What is difference between induced voltage and induced current?

Just as a current flowing through a wire will produce a magnetic field, so a wire moving through a magnetic field will have a current flowing through it. This is called electromagnetic induction and the current in the wire is called induced current. A stationary wire in the presence of a changing magnetic field also has an induced current. A changing magnetic field can be produced either by moving a magnet near to the stationary wire or by using alternating current. A stationary wire in a magnetic field which is not changing will have no current induced in it. You will sometimes see this effect described as induced voltage. Strictly speaking, you will only get an induced current in the wire if it is part of a complete circuit. A wire which is unconnected at both ends will have a difference in voltage between the ends (a potential difference) but current can only flow when the wire is in a circuit. Induced current is used in electricity generation and transformers.Another AnswerThere is no such thing as an 'induced current', only an 'induced voltage'. Current will flow only if the conductor into which the voltage is induced forms part of a closed circuit.


How was current produce or induced?

Current is induced and not produced. when an electric wire is passed through magnetic field the current is induced in the electric wire, this electric wire is enamelled copper conductor of a rotor.AnswerCurrent is never 'induced' into a conductor. It is a voltage that is induced. If that conductor is then part of a complete circuit, then the induced voltage will cause a current to flow. The induced voltage will occur even when the conductor is open circuited.


Why voltage leads in Inductor?

Maximum induced voltage occurs when the current is changing at its greatest rate -this occurs when the current passes through zero. Since this voltage acts to oppose current flow, this maximum voltage acts in the negative sense when the current is acting in the positive direction. Since the supply voltage is equal, but opposite, the induced voltage, it is maximum when the current is zero -so leads by 90 degrees.


What are the reasons why a current is induced in a coil?

Current is not induced into a coil. It's voltage that is induced into a coil. If the coil is connected to a load, or even short circuited, then a current will flow as a result of the induced voltage -but it's the voltage, not the resulting current, that's induced!Voltage is induced into a coil because the the changing magnetic field, due to the change in current (0 to Imax or vice versa) applied to that coil. The process is called 'self induction'.


When can voltage be induced but not current?

"Induced" is the verb you are looking for. A current is induced in the secondary circuit by the current in the first changing, provided both conductors are close enough for the driving current's electro-magnetic field to enclose the second conductor. Note that word "changing". Direct current produces a field but that remains constant and does not induce a secondary current, as a.c. does.


How does a coil of wire create a electrical current?

By itself, it won't. To have an electrical current, you need a voltage. This voltage might be applied externally, or it might be induced by movement of the wire through a magnetic field (or by a changing magnetic field).


How to generate a voltage in a coil?

The voltage induced into a coil is proportional to the rate of change of current (dI/dt) through that coil. If the current is a constant value, then no voltage is induced. The equation is as follows: V = - L (dI/dt)where L is the inductance of the coil, measured in henrys, and dI/dt means 'change of current divided by change of time'. The minus sign indicates that the induced voltage opposes the change in current.


What is induction of electric current?

According to Farady's law, whenever the flux linking with the coil changes, emf will induce in that coil.Actually the material should oppose the flux changes, that opposition is the induced current. Induced current will set own flux, opposite to that of the flux changes.For further details, refer lenz law.


Is there no induced voltage in an inductor unless the current is changing?

In an ideal inductor, no, there is no voltage induced across an inductor unless the current in the inductor is changing. However, since there are no ideal inductors nor power supplies, eventually an inductor will draw a constant current, i.e. the limit of the power supply; and, since no inductor has zero ohms at equilibrium, that current will translate to voltage.


Who formulated a law for determining the direction of the induced current in a conductor?

There is no such thing as an 'induced current'. What is 'induced' is a voltage. If the conductor into which that voltage is induced forms a complete circuit, then a current will result. But it's the voltage that's induced, NOT the current! The direction of the induced voltage is explained by Lenz's Law which, in simple terms, tells us that the direction of the inducted voltage is always such that it will oppose the change in current that causes it. So the induced voltage will oppose any increase in current, but will act in the same direction as a reduction in current.


Do you add electrical supply voltage and induced voltage of a coil to get total voltage on the coil?

The induced voltage acts to oppose any change in current that is causing it. So, if the current is increasing, then the induced voltage will act in the opposite direction to the supply voltage; if the current is decreasing, then the induced voltage will act in the same direction as the supply voltage.