Best Answer

The current flowing through a circuit is equal to voltage divided by resistance:

I = U / R, and therefore R = U / I.

With your given data, R will be 24 Ohms.

It is helpful to remember following figure:

U

I R

If you ever want to calculate one of those values, cover it with your finger, and the rest will look like an equation. For example, when looking for I, cover I and the rest of figure gives you U over R.

More answers

V = I x R so R = V/I or 110/5 = 22 ohms

Lvl 1

10

Q: Current flow 5amps in a 120v circuit . what would the resistance be?

Write your answer...

Submit

Still have questions?

Continue Learning about Engineering

If you double the voltage in a circuit, the power is quadrupled, assuming the resistance stays the same.

You can have current without resistance. You would just have zero voltage drop across that zero resistance.However, the question is very interesting, because if you really had zero resistance in the entire circuit, it would be impossible to have any voltage at all without generating an infinite current, so the answer in the theoretical case is no, you can have no current, nor voltage, if there is no resistance at any point in the circuit.

Since a short circuit is, essentially, a zero impedance connection between nodes, the current in a short circuit is limited only by the ability of the source. In the case of an ideal voltage source connected to an ideal short circuit, you would have infinite amperes.

That will depend on the internal resistance of the battery. I = E / R Where I is the current, E is the open circuit battery voltage, and R is the internal resistance of the battery.

Simply put, the purpose of a resistor is to 'resist' the flow of current. Ohm's Law tells us that for a given voltage, the larger the resistance, or value of that resistor, the lower the current that will flow. Ohm's Law states that I (current) = E (voltage) / R (resistance) - where current is measured in amps, voltage is measured in volts and resistance is measured in ohms.

Related questions

a circuit with no resistance or zero resistance can be considered as open circuit in which the current is zero. without resistance the circuit just becomes open ()

If the circuit is carrying current then that means that the load (resistance) is in the circuit. if an ohm meter is connected in the live circuit then there would be some voltage drop at the ohm meter but as the meter has very less resistance, this would damage the instrument.

As long as the voltage between the ends of the circuit remains constant, the current through the circuit is inversely proportional to the total effective resistance of the circuit.

If you double the voltage in a circuit, the power is quadrupled, assuming the resistance stays the same.

You can have current without resistance. You would just have zero voltage drop across that zero resistance.However, the question is very interesting, because if you really had zero resistance in the entire circuit, it would be impossible to have any voltage at all without generating an infinite current, so the answer in the theoretical case is no, you can have no current, nor voltage, if there is no resistance at any point in the circuit.

A circuit has an applied voltage of 100 volts and a resistance of 1000 ohms. The current flow in the circuit is 100v/1000ohms which would equal .1.

The resistance remains constant. The voltage would change, in accordance with Ohms' law, with a change in current.

Since a short circuit is, essentially, a zero impedance connection between nodes, the current in a short circuit is limited only by the ability of the source. In the case of an ideal voltage source connected to an ideal short circuit, you would have infinite amperes.

If the ratio of voltage to current is constant, then the circuit is obeying Ohm's Law. If the ratio changes for variations in voltage, then the circuit does not obey Ohm's Law.

The only way current can increase while resistance in a circuit increases is if voltage, which is the force that causes electric current, increases.

V=IR where V is voltage, I is current and R is resistance. You want to know what the current will be in a series circuit based on the resistance. You need to know the voltage as well as the resistance, gives you the equation as follows I=V/R So if you have 10 volts and a 1 ohm resistor, the current will be 10 amps. If you increase the resistor to 10 ohms, your current will then be 1 amp. In a parallel circuit, the resistance is equal to the sum of the inverse. For example. If I have two resistors of 2 ohms each in parallel, the equation would be 1/2 + 1/2 = 0.5 + 0.5 = 1 In that particular instance, your current would increase.

Ohm's law applies: Current = Voltage / Resistance As such if you double the resistance of the light bulb you end up with half as much current.